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Why So Negative?
The past few years has seen an explosion of applied ‘metrics work showing
some conventional estimators don’t “play well” with effect heterogeneity

Specifically, that they sometimes average together heterogeneous
effects, with non-convex weights (seems bad!)

Recall the Angrist (1998) result on OLS + selection-on-observables:

Convex weights, as long as you control flexibly enough for confounders

But what if we’re in “parallel trends”-land, where we don’t assume
the treatment is conditionally random?

Angrist ‘98 only concerns a single treatment; what if they’re multiple?

We’ll tackle these problems in turn, before discussing some solutions

Main takeaway: Don’t Panic! The jury is still out on how important
these problems are empirically ...
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Example: Staggered Adoption

Recall we previously studied the ATT interpretation of TWFE in two time
periods, where treatment only flips on for some in T = 2

Now suppose we have a panel with t = 1, . . . ,T

Units adopt a binary treatment at different dates Gi ∈ {1, . . . ,T}∪∞,
where Gi = ∞ means “never treated”

We continue to run a TWFE regression:

Yit = βDit +αi + τt +νit

where Dit = 1[t ≥ Gi ] indicates treatment receipt

If we start with a constant FX model, Yit = βDit + εit , we’d be done!

But notice something a bit weird here: we can run this regression
even if there are no never-treated units ...
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Simple Staggered Adoption
Consider T = 2 with two groups: always-treated units (with Gi = 1;
Di1 = Di2 = 1) and switchers (with Gi = 2; Di1 = 0, Di2 = 1)

We can use the usual two-period trick: ∆Yi = τ +β∆Di +∆εi , so
β = E [∆Yi | Gi = 2]−E [∆Yi | Gi = 1]

Assume PT holds: E [Yi2(0)−Yi1(0) | Gi = 1] = E [Yi2(0)−Yi1(0) | Gi = 2]

β =E [Yi2(1)−Yi1(0) | Gi = 2]−E [Yi2(1)−Yi1(1) | Gi = 1]
=E [Yi2(1)−Yi2(0) | Gi = 2]+E [Yi2(0)−Yi1(0) | Gi = 2]
−E [Yi2(1)−Yi2(0) | Gi = 1]+E [Yi1(1)−Yi1(0) | Gi = 1]
−E [Yi2(0)−Yi1(0) | Gi = 1]

=E [Yi2(1)−Yi2(0) | Gi = 2]︸ ︷︷ ︸
ATE for switchers

− (E [Yi2(1)−Yi2(0) | Gi = 1]−E [Yi1(1)−Yi1(0) | Gi = 1]︸ ︷︷ ︸
Change in ATE for always-treated

)
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“Forbidden Comparisons,” Illustrated
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No Problem Under Constant Effects
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General Problem
Suppose the causal model is Yit = βitDit + εit for heterogeneous βit

Linearity is without-loss for binary Dit ; further complications arise
with continuous treatments (see e.g. Calaway et al. (2021))
Assuming static effects for simplicity (more on this soon)

Frisch-Waugh-Lovell: OLS yields

β̂ =
∑it YitD̃it

∑it D̃2
it

=
∑it βitDitD̃it

∑it DitD̃it
+

∑it εitD̃it

∑it DitD̃it

Parallel trends implies E [∑it εitD̃it | D] = 0, so E [β̂ ] = E [∑it ωitβit ]

The weights ωit =
Dit D̃it

∑js Djs D̃js
aggregate to one (E [∑it ωit = 1). But

they may not be convex: could have ωit < 0
Unlike with Angrist ‘98, can’t “average over” the random treatment
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Is This A Problem?
In theory, negative weights could matter a lot: βit could be zero or
negative for all (it), but E [β̂ ] = E [∑it ωitβit ] could come out positive

In practice, of course, the weighting scheme could matter little

The good news with E [β̂ ] = E [∑it ωitβit ] is that if treatment effects are
“roughly constant” we have E [β̂ ]≈ E [∑it ωit ]β = β

More generally, we could have a lot of variation in βit as long as it’s
uncorrelated with ωit (which we directly observe)

The recent literature contains some examples of negative weights
mattering, but we should as always be aware of selection bias...

‘Metrics papers are easier to write with compelling applications...

...but top applied papers already pass a lot of robustness checks

Not clear which effect dominates (we need a comprehensive survey!)
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Solutions: Use “Clean Comparisons”
Callaway & Sant’Anna (2020), Sun & Abraham (2021), and de
Chaisemartin & D’Haultfœuille propose alternative estimators that
aggregate simple “clean” comparisons

E.g. only compare “switchers” in time t to never-treated units or
units not treated until time t to identify switcher ATEs
Can choose how to average ATEs (as before)
See e.g. the csdid Stata package for Callaway-Sant’Anna

Careful sample + regressor choice can automate things with OLS. Recall

Yit = βDit +αi + τt +W ′
i γt +νit

identifies a variance-weighted average of within-group DiDs when Wi
contains group indicators and T = 2

Can use this to “stack” groups containing clean two-period
comparisons (just don’t forget to cluster by repeated observations!)
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Regression-Based Solutions

Borusyak et al. (2021), Wooldridge (2021), and Gardner (2021) propose
“imputation” estimators that estimate counterfactual Yit(0) directly

E.g. regress Yit on unit and time FE in Dit = 0 cells, then average
Yit(1)− Ŷit(0) in Dit = 1 cells (sound familiar?)

See e.g. the did_imputation Stata package for BJS ‘21

These use more variation (i.e. more pre-treatment periods), so are likely to
yield more precise estimates than Callaway & Sant’Anna

They also work for any approach based on a model for Y (0), not just
TWFE / parallel trends

Sometimes they can also be automated with OLS (see Wooldridge)

In practice, people often try multiple solutions (in their appendix...)
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Multiple Treatments
We’ve seen how “model-based” identification strategies yield regressions
with (possibly) negative own-treatment weights

Contrast to “design-based” selection-on-observables regressions,
where convex weights are ensured so long as we flexibly control

I.e., "Negative Weights are no Concern in Design-Based
Specifications” (Borusyak and Hull, 2024)

Alas, negative weighting becomes more general w/ multiple treatments:

Both model-based & design-based regressions can suffer from
“contamination bias,” incorporating effects from other treatments

This can again be a big deal in theory ... but in practice?

People study multiple-arm RCTs with regression all the time. How
come they hadn’t noticed this problem until recently?
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Example: Event Study Regressions
Sun and Abraham (2021) study TWFE regressions of the form:

Yit = αi + τt + ∑
g∈G

µg1[t −Gi ∈ g ]+νit

where G collects disjoint sets of relative periods ℓ ∈ [−T ,T ]

E.g. G = [−T , . . . ,−2,0, . . . ,T ] for a fully dynamic “event study”
with a never-treated control group

Without never-treateds, need to drop two periods (Borusyak et al ‘21)

They show (basically by Frisch-Waugh-Lovell) that the µg generally mix
together comparisons from other periods g ′ ̸= g

Under PT, this means µg incorporates ATT’s from other periods

Note this holds even for pre-period µg ! We can find µg ̸= 0 even
when there are no “true” pre-trends...

13



General Problem
Goldsmith-Pinkham et al. ‘22 show the general form of contamination bias

Consider a partially linear model: Yi = ∑k Dikβk +g(Wi)+Ui

Assume “exogeneity”: E [Yi(k) | Di ,Wi ] = E [Yi(k) | Wi ] for all k

Suppose g(·) is flexible enough to span E [Yi(0) | Wi ] (e.g. parallel
trends) or propensity scores pk = E [Dik | Wi ] for all k

We show each regression coefficient βk can then be decomposed:

βk = E [λkk(Wi)τk(Wi)]+ ∑
ℓ̸=k

E [λkℓ(Wi)τℓ(Wi)]

where τk(Wi) = E [Yi(k)−Yi(0) | Wi ], λkk = E [D̃ikDik |Wi ]

E [D̃2
ik ]

, λkℓ =
E [D̃ikDiℓ|Wi ]

E [D̃2
ik ]

,

and D̃ik is the residual from regressing Dik on g(Wi) and all other Di ,−k

E [λkk(Wi)] = 1, E [λkℓ(Wi)] = 0. Further λkk(Wi)≥ 0 if g(·) spans pk
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Unpacking The Result

βk = E [λkk(Wi)τk(Wi)]︸ ︷︷ ︸
Own treatment effect

+ ∑
ℓ̸=k

E [λkℓ(Wi)τℓ(Wi)]︸ ︷︷ ︸
Contamination bias

E [λkk(Wi)] = 1, E [λkℓ(Wi)] = 0. Further λkk(Wi)≥ 0 if (*) g(·) spans pk

(*) corresponds to a “design-based” regression: No negative
own-treatment weights (generalizing Angrist ‘98 further)

Unless λkℓ = 0 identically, there’s potential for contamination bias

Intuition: FWL partials both g(Wi) and Di ,−k out of Dik to estimate βk

The trick to Angrist ‘98 was that this auxilliary regression identified a
CEF (the p-score). But here E [Dik | Wi ,Di ,−k ] is likely nonlinear

FWL residual D̃ik is thus likely not mean-zero given (Wi ,Di ,−k), so it
“picks up” effects of other treatments Dik given Wi
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Is This a Problem?

In principle, contamination bias can apply to a large number of settings:
1 RCTs with multiple treatments and randomization strata
2 Selection-on-obs with multiple treatments (e.g. value-added’ models)
3 TWFE with multiple treatments (e.g. “mover” regressions)
4 IV with multiple instruments (e.g. “examiner/judge” IVs)
5 Descriptive regressions on multiple variables (e.g. disparity analyses)

But again, whether there is a big problem depends on the empirical weights

Since the CB weights average to zero, if they’re uncorrelated with
effect heterogeneity there’s no issue

The weights are identified; we can estimate them to diagnose bias
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Solutions
Contamination bias comes from the FWL auxilliary regression not
controlling “flexibly enough” for (Wi ,Di ,−k) ... but we can fix that:

Yi = ∑
k

Dikβk +g(Wi)+∑
k

Dik(qk(Wi)−E [qk(Wi)])+Ui

The blue term captures non-linearities in (Wi ,Di)

When Di | Wi is as-good-as-randomly assigned, βk identifies the ATE
of treatment k (Imbens and Wooldridge, 2009)
Sun and Abraham (2021) propose similar interacted regressions to
solve contamination in event studies (where Wi is event time)
See our multe Stata package for automating this + other CB checks

This works in principle, but in practice can fail / lead to noisy estimates
Key challenge: limited overlap (pk(Wi) may be close to zero or one)
If CB is limited, an uninteracted regression is likely more efficient...
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Illustration: Project STAR

Krueger (1999) studies the STAR RCT, which randomized 12k students in
80 public elementary schools in Tennessee (!) to one of 3 classroom types:

1 Regular-sized (20-25 students) – Control
2 Small (13-17 students) – Treatment 1
3 Regular-sized with a teaching aide – Treatment 2

Kids were randomized within schools, so the propensity of assignment to
each treatment varied by school

Krueger thus estimates: TestScorei = αschool(i)+β1Di1 +β2Di2 + εi

We find significant potential for contamination bias: lots of treatment
effect heterogeneity and variation in contamination weights

But actual contamination bias is minimal: Corr(effects,weights)≈ 0
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Project STAR, Revisited
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STAR Regression Weights vs. Treatment Effects
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Motivation: Geographic Variation in Healthcare Spending
A longstanding puzzle in health economics: why does utilization/spending
differ so much across regions?

In Medicare (65+), the highest-spending areas have twice the annual
per-capita spending as the lowest spending areas (Austin et al 2020)

Spending variation is not clearly correlated with health outcomes

Two possible explanations: causal effects vs. selection bias

Do regional conditions cause patients to spend more? (“supply”)

Or do high-spending patients sort to certain regions? (“demand”)

If places drive meaningful spending differences with little to show for it,
policies that standardize care can save several percentage points of GDP

But if patients in high-utilization areas are sicker, or prefer more
intensive care, such policies could be ineffective / counterproductive
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Average Annual Per-Patient Medicare Spending (‘98-’08)

Note: hospital referral regions (HRRs), defined by the Dartmouth Atlas
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Identification Strategy: Patient Migration
FGW’s leverage the movement of Medicare beneficiaries across HRRs to
disentangle place effects & patient sorting

Thought experiment: if place effects are causal, patients moving from
HRR j to HRR k should on avg see spending converge to region k’s

Conversely, if regional variation is all due to sorting, patients should
see no average change in spending following a move

It turns out beneficiaries move often & for arguably idiosyncratic reasons

Most common (Health and Retirement Study): “to be near children/
relatives/friends” (41%) & “health problems or services” (13%)

Importantly, FGW will leverage differential moves across HRRS with
high/low spending – not directly compare movers and stayers

Main concern: time-varying health shocks that lead to systematic
moves towards/away from high-spending regions
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HRR-Average Utilization Changes Across Movers
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Causal Model and Event Study
FGW microfound a constant-effects causal model of (log) annual spending:

yit = αi + τt + γj(it)+ x ′
itβ + εit (1)

where j(it) gives the HRR of patient i in year t

Main object of interest: avg share of utilization differences due to place fx:

S = ∑
j,j ′

ωj,j ′

(
γj − γ ′j
ȳj − ȳ ′

j

)
for some weights ωj,j ′

Consider a patient i who moves from origin o(i) to destination d(i); let
r(i , t) =−T , . . . ,0, . . . ,T index time relative to the move. Rewrite (1) as:

yit = αi + γo(i)︸ ︷︷ ︸
α̃i

+τt +
γd(i)− γo(i)
ȳd(i)− ȳo(i)

1[r(i , t)> 0]∆i + x ′
itβ + εit

for ∆i = ȳd(i)− ȳo(i). This suggests a TWFE reg: of yit on 1[r(i , t)> 0]∆i
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Motivating Diff-in-Diff
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Motivating Pre-Trend Check
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Main Event Study

yit = ρr(i ,t)∆i +φr(i ,t)+αi + τt + x ′
itβ + εit
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Revisiting FGW ‘16, Post-Goodman-Bacon

The event study jump of 0.5 suggests around half of the observed variation
in regional utilization ȳj is causal / due to “supply-side” factors γj

I.e. that Si =
γd(i)−γo(i)
ȳd(i)−ȳo(i)

is around 0.5, on average across movers i

Pre-/post-trends look pretty good (though not perfect!)

But as we now know, ρ0 may identify a non-convex average of Si

“Staggered adoption” with no pure control group (non-movers)

Badinski et al. (2023), now older and wiser, check whether negative
weights are actually an issue (as well as more substantive analyses!)

Estimate the FGW event study separately by move year + stack

Semi-pure control group: beneficiaries moving in any other year
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Stacking Up Simpler Comparisons
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Estimating Place Effects Themselves

FGW also directly estimate their constant-effects model (1):

yit = αi + τt + γj(it)+ x ′
itβ + εit

They correlate the estimates of γj with various place observables, and use
them for certain partial-equilibrium counterfactuals

Here a concern is contamination bias: 306 HRR treatments + TWFE

Hull (2018) formalizes this concern and proposes an alternative
“mover average treatment effect” (MATE) estimator

Similar to Callaway and Sant’Anna, but for multiple treatments; LMK
if you’d ever like to work with a “beta” Stata package
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Place Effect Correlates
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Decomposing Geographic Variation with Place Effects
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Aggregating Simpler Comparisons
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My Takeaways

Finkelstein et al. (2016) is a great paper, in a few distinct ways:
1 Tackles a big + longstanding problem in a new + creative way
2 Carefully discusses model assumptions (e.g. constant effects)
3 Builds + illustrates intuition for identification w/simple comparisons
4 Results are super robust, even with respect to the neg. weight lit.

Their “mover” approach seems under-utilized, within and outside of health

Cantoni & Pons ‘22 use it to study regional diffs in voting behavior

Your colleague Mauricio Caceres Bravo is using it to study prison fx

I suspect there are other arbitrage opportunities (happy to discuss!)
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